§ 10.1, 10.2 - Eigenvalue Problems - Fourier series. E_{x} , $y'' + \lambda y = 0$, $y(0) = y'(\pi) = 0$ $\frac{1}{2}$, xet $\lambda = \mu^2$. $Hun, y'' + \mu^2 y = 0$ => r'+m2 =0 => (= tim. So, $y(x) = C_1 (os(\mu x) + C_2 sin(\mu x))$ $y(0) = c_1 = 0 = c_1 = 0$ \longrightarrow y(x) = (u, s, n(u, x)) $y'(x) = C_z \mu \cos(\mu x)$, $y'(\pi) = C_z \mu \cdot cos(\mu \cdot \pi) = 0$ => eiller $c_2 = 0$ or $(25(\mu\pi)^{2} = 0)$ Picture of conve: So, (os(q)=0) when $q=(\frac{2k-1}{2})$, $k\in\mathbb{Z}$. So, $COA(M\pi) = O$ when $M.\pi = (2K-1)\pi$ $\begin{pmatrix} S \\ M = (2K-1) \\ 2 \end{pmatrix}$ 50, $\lambda_n = \frac{(2K-1)^2}{4}$, $K \in IN$ $\frac{1}{20}$: y'=0 => y'=b $2 \le 0$: set $2 = -\mu^2$. Thu, $y'' - \mu^2 g = 0$ => $z^2 = -\mu^2$ So, $y(x) = c_1 e^{Mx} + c_2 e^{Mx}$ $y(o) = c_1 + c_2 e^{Mx}$ $y(0) = C_1 + C_2 \longrightarrow C_1 = -C_2$ $y'(x) = \mathcal{M}(c_1 e^{\mathcal{M} x} - c_2 e^{\mathcal{M} x}),$ $(y'(\pi) = \mathcal{M}(c_1 e^{\mathcal{M} \pi} - c_2 e^{\mathcal{M} \pi}),$ $(y'(\pi) = \mathcal{M}(c_1 e^{\mathcal{M} \pi} + e^{\mathcal{M} \pi}) \neq \mathcal{O} e^{\mathcal{M} x}.$ So, $C_1 = 0$ and hence $C_2 = 0$. Only the trial solt when 220. So, the eigenvalues are $\lambda_{k} = \frac{(2k-1)^{2}}{4}$ and the eigenfunctions are Yr(x) = Sin (Irx) $z - Sin\left(\frac{(2K-1)^2 X}{4}\right)$ Ex. y" - 2y zo, y(0)=0, y'(1)=0

$$\begin{array}{rcl} \underline{I:2}^{1} & \underline{q_{1}} x_{1}^{2} = b_{1} c_{1} & \underline{q_{1}} y_{1}^{2} = c_{2} c_{1} & \underline{r_{1}} & \underline{r_{2}} & \underline{r_{2}$$

- 2. Solve the problem for each case. 3. Use boundary conditions to solve for 7. (there may be many values of 2, or thre may be none).
- 4. Once you have the eigenvalues, you can write down the eigen functions.

Fourier Serles: Given a periodic function fix) on E-L, L], we can write firs as i $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$ $a_{0} = \int_{L} \int_{L} f(x) dx$ $a_{n} = \int_{L} \int_{L} f(x) \cos(n\pi x) dx$ $b_{n} = \int_{L} \int_{L} f(x) \sin(n\pi x) dx$ -Lwhere

It's like magic!

$$F_{x}, F_{ind} = \begin{cases} -1 & -2 \leq x \leq 0 \\ -4 & 1 & 1 \\ -4 &$$

So, find
$$a_n \notin b_n$$
, F_{rst} , note that
 $f(x) = -f(-x) = -f(-x) f$ is $ODD!$

$$\begin{aligned} \mathcal{T}_{u_{n}} & a_{o} = \frac{1}{L} \int_{-L}^{L} f_{(x)} dx = \mathcal{O} \quad (f \text{ is } odd!) \\ \alpha_{n} = \frac{1}{L} \int_{-L}^{L} f_{(x)} \cos(\frac{n\pi x}{L}) = \mathcal{O} \quad (Cos \text{ is } even, f \text{ cos } = odd!) \\ b_{n} = \frac{1}{L} \int_{-L}^{L} f_{(x)} \sin(\frac{n\pi x}{L}) dx = 2 \cdot \frac{1}{L} \int_{0}^{L} f_{(x)} \sin(\frac{n\pi x}{L}) dx \quad \sin(\frac{n\pi x}{L}) dx \quad \sin(\frac{n\pi x}{L}) dx \quad \sin(\frac{n\pi x}{L}) dx \\ b_{n} = 2 \cdot \frac{1}{L} \int_{0}^{1} 1 \cdot \sin(\frac{n\pi x}{L}) dx \quad c = 1 \cdot (-\cos(\frac{n\pi x}{L}) \cdot \frac{2}{n\pi} \int_{0}^{2} \frac{1}{n\pi} \int_{0}^{\pi^{12}} \frac{1}{n\pi} \int_{0}^{\pi^{12$$

Gu,

$$\begin{cases} (w_{1} = \sum_{k=1}^{\infty} b_{k} \cdot a_{k}(\frac{w_{1}}{w_{1}}) + \frac{u}{w_{1}} \sum_{k=1}^{\infty} \frac{e^{i t} (u_{1} \cdot b_{1} + v_{1})}{2w_{1}} \\ = \sum_{k=1}^{\infty} b_{k} \cdot a_{k}(\frac{w_{1}}{w_{1}}) + \frac{1}{w_{1}} \sum_{k=1}^{\infty} \frac{e^{i t} (u_{1} \cdot b_{1} + v_{1})}{2w_{1}} \\ = \sum_{k=1}^{\infty} \frac{1}{b_{k}(x)} = \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} \\ = \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} \\ = \frac{1}{b_{k}(x)} + \frac{1}{b_{k}(x)} +$$

=>
$$f(x) = \frac{4}{\pi} \sum_{h=1}^{\infty} \frac{(-1)^n}{n} \cos(n\pi x)$$